
Particle Playground - Manual

!

!
!
!

Particle Playground (v1.20) - Manual!!!!
Introduction!!
Particle Playground is a toolset which enables you to be creative in new ways of altering and
rendering particles in your 3d application.!!
Particle Playground can process and create particles from images, meshes (static, moving,
skinned/animated, procedural), painted and projected positions.!!
On top of this there are manipulators which will alter the particle behavior over their lifetime, adding
different types of forces and properties. All of this is optimized for performance, which makes
Particle Playground a perfect match for low-end/mobile devices (note that the example scenes is
intended for desktop environments).!!
The Particle Playground framework features can all be called through scripting where both C# and
JavaScript is available. It is also fully accessible through the Unity Editor's Inspector, where you
can work with the settings through sliders and many times directly into the scene view through the
interactive tools.!!
For more information please visit http://playground.polyfied.com/.!!

Page � of �1 28

http://playground.polyfied.com/

Particle Playground - Manual

Getting Started!!
Once Particle Playground is imported to your Unity Project you can create it through the home
screen ”Playground Wizard”. You’ll find it through Window > Particle Playground > Playground
Wizard. From here you can create new Particle Playground Systems and presets.!!
To create a Particle Playground System through script please see the Script Reference section
below.!!!
Good to know!!
• The Playground Wizard 

This is where the action begins (Window > Particle Playground > Playground Wizard). Select
your preferred script language in the menu. Use this to create new Particle Playground Systems
and presets. All presets are physically stored in Particle Playground/Resources/Presets/, all icons
for the presets are stored in Particle Playground/Graphics/Editor/Icons/.!!

• The Playground Manager  
When creating a new Particle Playground System a Playground Manager will automatically be
instantiated. The Playground Manager is the object driving all Particle Playground Systems within
the scene and is containing all Global Manipulators as well.!!

• Example Scenes in the project 
Please see the examples in Particle Playground/Examples/Example Scenes/ within your Assets
folder to get a preview of some of Particle Playground’s capabilities. Note that these are intended
to run in desktop environments. !

• Local and Global Manipulators  
A manipulator is an object that will alter velocities and other properties on a particle. The Local
Manipulators are held by each Particle Playground System and will only affect the particles within
itself. These are marked with cyan colors in the Scene View. 
All Global Manipulators are held by the Playground Manager. These will affect all Particle
Playground Systems (within layer). These are marked with blue colors in the Scene View. 
To add one, simply select the Playground Manager (or the end of a Particle Playground’s
Inspector) / Particle Playground System, unfold the Manipulator-section, click Create and assign
a Transform from your scene. Make sure to set type, the layers it will affect, its size and strength
to start manipulate the Particle Playground Systems within the scene. 
 
Always use Local Manipulators when you want the manipulator object to be stored within a
prefab/preset. A Global Manipulator can only serialize within the scene along with the Playground
Manager. !

• Publishing your preset  
Selling your own created particle system presets on the Asset Store is encouraged. Make sure to
read the Publishing Presets section found on the next page before you submit, for additional
information please see playground.polyfied.com. !

• Working with C# and/or JavaScript  
You choose your preferred language from the Window menu when opening the Playground
Wizard. All C# classes ends with a ”C”. For instance calling a function on the Playground
Wrapper in C# could look like this: PlaygroundC.SomeFunction(). You can run both languages
at the same time in your scene if you for instance more easily want to create and publish presets
which supports both languages. The languages are living in separate spaces, so you won’t be
able to run a particle system made in JS from a C# Playground Manager. 

Page � of �2 28

Particle Playground - Manual

If you don’t plan on scripting towards Particle Playground the choice of language doesn’t matter. 
Removing a language is as simple as removing the language specific folders (”JavaScript” and
”Csharp”) from your project folder. !

• Source Mode - Script 
You can use a Particle Playground System to script your own source data for each particle. This
is good when you want to extend the capabilities of a source but keep the core features such as
the particle pool, forces, collisions and manipulators. Please see the Script Reference section for
more details.!!!!

Publishing Presets!!
The Particle Playground framework wants to encourage creativity and the possibility to share your
solutions amongst the community. Being a Particle Playground owner, you’re entitled to sell your
own created particle system presets and extensive solutions on the Unity Asset Store.!
Creating a preset prepared for publishing is done through the Preset Wizard (found in Playground
Wizard > Presets > Create).!!
To successfully publish your presets, please use the online Publish Guide.!!
Please note:!!

• Your customers do not need to own Particle Playground in order to run your preset, but will in that case lack the
ability to intuitively edit its settings or to use the Playground Wizard to instantiate your preset. Therefore if you have
any functionality to your preset which revolves around being customizable, please make sure that your scripts
controlling the preset opens up for customizing. As an example see the Playground Laser preset’s prefab.!!

• Publishing a preset with any of the Particle Playground framework Editor scripts is not allowed. Doing so is a subject
for being unapproved during review. The only scripts allowed from the core framework is Playground.js /
PlaygroundC.cs and PlaygroundParticles.js / PlaygroundParticlesC.cs.!!!!

Reference Manual!!
Particle Playground introduces some new possibilities along with some new naming conventions
for Particle Systems. Here is a list of descriptions of the current available features, from
Playground Editor top, along with script naming convention within parenthesis.!!
Particle Playground System (PlaygroundParticles / PlaygroundParticlesC)!!
Source  
 
Source (source) 
The source from which particles will emit in this Particle Playground System. You have several
alternatives,!!

!State (SOURCE.State / SOURCEC.State)!
!Emit from pre-defined positions created from an image or mesh. All Particle Playground
Systems uses a list of states to store data from a mesh vertices or an image’s pixels, this
can be accessed by script through PlaygroundParticles.states[int] and will return a
ParticleState / ParticleStateC.!!

Page � of �3 28

Particle Playground - Manual

!When creating a new State from an image you can define Texture, Depthmap (and
Depthmap Strength), Name, Scale, Offset and a parent Transform. When creating a State
from a mesh you can define Mesh, Texture, Name, Scale, Offset and Transform. Using a
transform will make you able to position, rotate and scale the State.!!

!Texture (stateTexture)!
Takes a Texture2D which will structure the State in color and positions from the Texture2D’s pixels. If
you use a texture when creating the State from a mesh, the positions will be colored from the UV-
mapping of the mesh.!!
Depthmap (stateDepthmap)!
Takes a Texture2D which will define the Z-value in Units by grayscale. Black = 0.0, White = 1.0.!!
Depthmap Strength (stateDepthmapStrength)!
The amount the Depthmap will affect the Z-positioning. A Depthmap Strength of 1.0 will affect the Z-
positions one Unit ranging from black to white.!
 
Mesh (stateMesh)!
The mesh to construct your State from. Each vertex in the mesh will define a position in the State.!!
Name (stateName)!
The name of this State. This is only used for your own convenience where seeing the name in the
States list is practical. 
 
Scale (stateScale)!
The world scale of this State. Each pixel will originally be a square of 1x1 Units. To make the final size
of a State smaller, use a number below 1.0. Using a number below 0 will invert the State in X- and Y
positions.!
 
Offset (stateOffset)!
A State will be created in Vector3(0, 0, 0) in world coordinates (or local coordinates if a stateTransform
is set) with origin of the image’s bottom left or a mesh’s pivot. Use the offset to place it elsewhere, with
offset from world’s or stateTransform’s Vector3(0, 0, 0) measured in Units. !!
Transform (stateTransform)!
To be able to position, rotate and scale a State !!

!When using State as Source you also have the possibility to have several states and do
transitions between them. Active State decides which State currently should be constructed
and when you change Active State a transition will occur if Transition isn’t set to None.!!

!Active State (activeState)!
Decides which State should be active in a Particle Playground System’s states-list.!!
!Transition (transition)!
The transition to use when Active State changes.!!

None (TRANSITION.None / TRANSITIONC.None)!
No transition will occur when changing Active State.!!
Lerp (TRANSITION.Lerp / TRANSITIONC.Lerp)!
A linear interpolation of position and color will occur when changing Active State.!!
Fade (TRANSITION.Fade / TRANSITIONC.Fade)!
A fade-out of previous Active State and fade-in of current Active State will occur when
changing Active State.!!
Fade2 (TRANSITION.Fade2 / TRANSITIONC.Fade2)!
A fade-out of previous Active State and fade-in of current Active State will occur along with a
linear interpolation of position when changing Active State.!!

!Transition Time (transitionTime)!
The time in seconds a transition will take.!

Page � of �4 28

Particle Playground - Manual

!!
!Transform (SOURCE.Transform / SOURCEC.Transform)!
!Emit from a Transform component within your scene.!

! !
!World Object (SOURCE.WorldObject / SOURCEC.WorldObject)!
!Emit from a Mesh component within your scene.!!
!! Update Mesh Normals (worldObjectUpdateNormals)!

Enable this if the World Object's mesh is procedural and changes vertices and/or normals direction
over time.!

!!
Skinned World Object (SOURCE.SkinnedWorldObject /
SOURCEC.SkinnedWorldObject)!
!Emit from a Skinned Mesh component within your scene.!

! !
! ! Source Down Resolution (sourceDownResolution)!

The source vertex skipping. Use this to lower the distribution of particles needed along your complete
skinned mesh. This is in many cases needed to amp performance when using skinned meshes in your
scene, especially when you target mobile platforms.!!

Script (SOURCE.Script / SOURCEC.Script)!
!Control all particle behaviors through custom scripts (advanced). Use
PlaygroundParticles.Emit(position, velocity, color, parent) to create a particle at position.!

!!
Emission Index (scriptedEmissionIndex)!
The particle that will emit next time you call Emit() on this PlaygroundParticles object.!!
Position (scriptedEmissionPosition)!
The particle’s initial emission position when you call Emit() on this PlaygroundParticles object.!!
Velocity (scriptedEmissionVelocity)!
The velocity of the particle that will emit next time you call Emit() on this PlaygroundParticles object.!
 !
Color (scriptedEmissionColor)!
The color of the particle that will emit next time you call Emit() on this PlaygroundParticles object.!!
Parent (scriptedEmissionParent)!
The parent transform of the particle that will emit next time you call Emit() on this PlaygroundParticles
object. This is used when calculating transform-specific features such as ”Only Source Positions”
which will make a particle child itself to a determined transform’s transform point.!!

Paint (SOURCE.Paint / SOURCEC.Paint)!
Paint positions and color by using your own brushes, or by a single point with color
information. Creating your own brushes can be done through the Brush Wizard, which you’ll
find in the Brush Preset menu when selecting Brush as Paint Mode. All painting features
relies on colliders being hit in the scene.!!

Paint Mode!
This is an Editor-specific feature which lets you switch between painting with a single point (Dot), using
predefined brushes (Brush) or erasing paint positions (Eraser). To paint live into the scene in script please
see the example scene Particle Playground - Paint.!!
Brushes!
Painting with brushes lets you fill a larger area with a predefined texture rather than a single point (like
Paint Mode: Dot). You can define the texture yourself along with how the brush should function, such as
detail, scale and spacing. When painting, each pixel (depending on chosen Detail level) will represent a
ray into the scene at screen position. Each ray need to hit a collider to create a Paint Position at world
point.!!

Brush Presets!

Page � of �5 28

Particle Playground - Manual

A list of predefined brushes with specific settings which will define current paint settings upon
selection. You can create your own presets by pressing the ”Create”-button which will open the
Brush Wizard. A preset is stored in Particle Playground/Resources/Brushes and can be edited
through the Inspector. To remove a preset from the Brush Preset list either delete the prefab in the
”Brushes”-folder or change the presentation mode to ”List” instead of ”Icons” and press the button
”-”.!!
Brush Shape (texture)!
The texture to project onto the surface where you choose to paint. The texture’s amount of pixels
(width and height) will be calculated for the amount of Paint Positions that will be created (amount
is shown in the ”Paint” progress bar). All brush textures need to have Read/Write Enabled and use
True Color (non-compressed) in their Import Settings.!!
Brush Detail (detail)!
The detail represents how many of the original pixels that should be read from the Brush Shape
texture. This will affect how many positions that will be created on every brush stroke. Keep in
mind that it’s by rare occasions you ever need a perfect copy of your brush’s full pixel amount onto
a surface.!!

Perfect (BRUSHDETAIL.Perfect / BRUSHDETAILC.Perfect)!
Every pixel will be read (100% of existing texture pixels).!!
High (BRUSHDETAIL.High / BRUSHDETAILC.High)!
Every second pixel will be read (50% of existing texture pixels).!!
Medium (BRUSHDETAIL.Medium / BRUSHDETAILC.Medium)!
Every forth pixel will be read (25% of existing texture pixels).!!
Low (BRUSHDETAIL.Low / BRUSHDETAILC.Low)!
Every sixth pixel will be read (16.6% of existing texture pixels).!!

Brush Scale (scale)!
The scale of a brush measured by the ratio of the original Brush Shape texture. For instance, a
texture with 32x32 pixels and a scale of 0.5 will represent a screen space area of 16x16 pixels.!!
Brush Distance (distance)!
How far the brush sees from its origin position into the scene (in the Editor the origin is the Scene
View’s camera). If the distance is shorter than the target collider you want to paint on then no Paint
Positions will be created.!!
Use Brush Color!
Each Paint Position is created along with the Brush Shape’s color information at the ray’s pixel
coordinate. Disabling this will use the Color chosen by you instead, the alpha information will still
be used from the Brush Shape texture.!!

Color!
The color to paint with when using the Dot Paint Mode. If you disable ”Use Brush Color” for a brush then
Color will determine each Paint Position color instead.!!
Paint Mask (layerMask)!
Determines which layer of colliders the paint function sees in the scene. Available for all Paint Modes (Dot,
Brush and Eraser). Use this to see through certain objects or mask out a single object in the scene to
avoid spilling paint.!!
Paint Spacing (spacing)!
The space needed for next paint position to occur. This is measured from the last paint position’s world
point towards where next will end up while painting. A transparent green disc will show the spacing area in
Scene View while painting. Use this to distribute paint more evenly along a surface for instance.!!
Max Paint Positions (paintMaxPositions - Playground.js/PlaygroundC.cs)!
The max positions allowed to be stored by this Paint object. Use this to limit the existing Paint Positions
within a scene. ”Exceed Max Stops Paint” will determine if no more painting can occur or if Paint Positions
will be removed (ascending from first position in list) when reaching the max limit.!!
Paint -information!

Page � of �6 28

Particle Playground - Manual

The amount of Paint Positions currently in the scene. ”Max Paint Positions” will determine where 100% of
the progress bar is. If you suddenly can’t see all Paint Positions the reason is much likely that you need to
extend the amount of particles in ”Particle Settings”.!!
Start/Stop Paint!
Use this to begin or abort painting into the scene.!!
Clear!
Removes all Paint Positions from the scene.!!!

Projection (SOURCE.Projection / SOURCEC.Projection)!
Project particles from a transform using a texture. This behaves similarly to the Unity
Projector. This can be used to for instance create fog, dust or splashes on certain surfaces.
Choose to offset the origin texture and the projected source position from the surface using
the projected normal’s direction. Use Live Update to update the projection position every
frame. You can scale your projection in any direction with the projection transform, but do
note that this will affect the projected position on all axes when using local simulation
space.!

!!
Transform (projectionTransform)!
The transform to project from.!!
Live Update (liveUpdate)!
Determines if the projection should update every frame. Enable this if your projection transform moves
or you have projected objects moving inside the projection area.!!
Origin Offset (projectionOrigin)!
Offset the texture’s origin in X- and Y values.!!
Projection Distance (projectionDistance)!
Determines how far the projection rays can travel into the scene, measured in Units.!!
Projection Scale (projectionScale)!
The scale of projection in Units. A scale of one will make each pixel one Unit. When using local
simulation space, use this to scale rather than the projection transform to ensure correct projection
depth.!!
Surface Offset (surfaceOffset)!
Determines how far away the source position will be distributed from surface. Using the projected
surface normal.!!
Projection Mask (projectionMask)!
The layer mask of which colliders within layer can be seen by the projection rays in the scene.!!

Particle Settings 
 
Particle Count (particleCount) 
The amount of particles that should be actively simulated in the system.!!
Emission Rate (emissionRate) 
The percentage of flow (normalized from 0 - 1) in burst sequences. This is calculated with the
Lifetime Sorting for a Particle Playground System to give a linear consistent behavior.!!
Overflow Offset (overflowOffset) 
The offset each overflow iteration from the source’s number of points. This will make the source
copy itself in direction. For instance, if you have a sphere that consists of 525 vertices and using
Particle Count of 1050, the Overflow Offset will determine where the later 525 overflowing particles
will position in relation to the first. The result is that you will get a perfect copy of your sphere at the
offset position. This can for instance be used intuitively to recreate the lights on a runway,

Page � of �7 28

Particle Playground - Manual

especially together with a Lifetime Sorting of Linear or Reversed. Using a transform will make you
able to rotate and scale the Overflow Offset.!!
Source Scatter (sourceScatterMin, sourceScatterMax) 
The spread of source positions within minimum- to maximum Vector3 range. Use this to scramble
your source positions to make them appear more randomly distributed.!!
Overflow Mode (overflowMode) 
Use this to set which method to calculate Overflow Offset by. Available methods are Source
Transform (transform point), Particle System Transform (transform point) and World (global).!!
! Source Transform (OVERFLOWMODE.SourceTransform /
 OVERFLOWMODEC.SourceTransform)!

Offset by calculating the source’s transform point.!!
! Particle System Transform (OVERFLOWMODE.ParticleSystemTransform /
 OVERFLOWMODEC.ParticleSystemTransform)!

Offset by calculating the particle system’s transform point.!!
! World (OVERFLOWMODE.World / OVERFLOWMODEC.World)!

Offset by calculating the world position. !
Source Point (OVERFLOWMODE.SourcePoint / OVERFLOWMODEC.SourcePoint)!
Offset by calculating the source position using the source point's normal direction.!!

Emit Particles (emit)!
Determines whether this Particle Playground System should emit particles or not. A Particle
Playground System reuses each particle in a cached pool, turning Emit Particles off will make the
calculation loop halt upcoming rebirths.!!
Loop (loop)!
Determines if this particle system should loop its lifetime cycle or just run the first.!!
Disable On Done (disableOnDone)!
When loop is set to false, this determines if the GameObject should disable when the lifetime cycle
has run through to the end of last particle.!!
Calculate Particles (calculate)!
Determines whether this Particle Playground System should calculate its particles or not. Particle
Playground will run all simulation over time in its calculation loop, such as velocities, lifetime
coloring and manipulators that should affect this system.!!
Minimum Size (sizeMin)!
The minimum size of a particle.!!
Maximum Size (sizeMax)!
The maximum size of a particle. 
 
Scale (scale)!
The scale of minimum- and maximum size. !
Initial Rotation Speed (initialRotationMin, initialRotationMax)!
The minimum- and maximum initial rotation of a spawned particle.!
 
Rotation (rotationSpeedMin, rotationSpeedMax)!

Page � of �8 28

Particle Playground - Manual

The minimum- and maximum rotation speed of each particle. To extend above 360 degrees please
change PlaygroundParticleSystemInspector.maximumAllowedRotation.!!
Rotate Towards Direction (rotateTowardsDirection)!
Apply rotation based on each particle’s velocity. This creates a direction which the particle will turn
towards. To offset the rotation use Initial Rotation Speed.!!
Rotation Normal (rotationNormal)!
When using ’Rotate Towards Direction’, the rotation normal determines which vector to rotate
around. This is always a normalized value set in world coordinates. A common operation would be
to rotate around the Main Camera’s (negative or positive) transform's forward to make the rotation
always appear the same for the user.  
For instance, particles.rotationNormal = Camera.main.transform.forward.!!
Lifetime (lifetime)!
The particles lifetime in seconds.!!
Lifetime Size (lifetimeSize)!
The particles size over lifetime. This is determined by a AnimationCurve where x-axis 0.0 to x-axis
1.0 is the complete lifetime and y-axis is the size in Units.!!
Lifetime Sorting (sorting)!
The sorting of how the lifetime initially should be structured in this Particle Playground System. Use
this to create different patterns in appearance of their source position.!!

!Scrambled (SORTING.Scrambled / SORTINGC.Scrambled)!
Particles will be randomly distributed.!!
ScrambledLinear (SORTING.ScrambledLinear / SORTINGC.ScrambledLinear)!
Particles will be randomly distributed but ensured to never appear at the same time.!!
Burst (SORTING.Burst / SORTINGC.Burst)!
Particles will be created all at once.!!
Linear (SORTING.Linear / SORTINGC.Linear)!
Particles will be distributed linearly over their lifetime with sorting from source positions.!!
Reversed (SORTING.Reversed / SORTINGC.Reversed)!
Particles will be distributed linearly reversed with sorting from source positions.!!
Nearest Neighbor (SORTING.NearestNeighbor / SORTINGC.NearestNeighbor)!
Particles will be distributed by distance to nearestNeighborOrigin. This will create a water
ripple effect in their lifetime appearance from origin and out.!!
Nearest Neighbor Reversed (SORTING.NearestNeighborReversed /
SORTINGC.NearestNeighborReversed)!
Particles will be distributed by distance from nearestNeighborOrigin. This will create an
inverse water ripple effect in their lifetime appearance from max distance towards origin.!!
Custom(SORTING.Custom / SORTINGC.Custom)!
Particles will be distributed with a curve where X is total amount of particles and Y is total
lifetime. 
 
Examples when using two positions on the curve:  
X1Y1, X0Y0: Linear 

Page � of �9 28

Particle Playground - Manual

X0Y0, X1Y1: Reversed  
X1Y1, X1Y1: Burst!!

Lifetime Offset (lifetimeOffset)!
Offsets the lifetime cycle. This can be used to set particle systems in sequences to each other. For
instance, using the Playground Runway preset you can now determine if two (or more) runways
should be similarly synced or offset in their blinking lights. You can also use this to annihilate any
fade-ins at first particle cycle by setting negative values. This can for instance be useful in a
situation where you want clouds similar to the Cloud preset to be fully visible from first frame in the
first particle cycle.!!
Forces 
 
Only Source Positions (onlySourcePositioning)!
Overrides all velocities and set every particle towards their source position every Update-cycle.
This can be a desired behavior when particles doesn’t move by force, but by their attached source
transform. You can still set all other type of lifetime behaviors and offsets. Please see the example
preset ”Matrix Cube” or ”Holobot” for basic usage. 
 
Calculate Delta Movement (calculateDeltaMovement)!
A Playground Particle System that uses World Object, Skinned World Object or Transform as
Source can calculate birth velocity from each points delta movement. What this practically does is
to give the particle an extra knock in the direction of the vertex- or position movement. Use Delta
Movement Strength to set the velocity scale.!!
Delta Movement Strength (deltaMovementStrength)!
The strength of the calculated delta movement. Particles with high Delta Movement Strength will
appear lighter than particles with low Delta Movement Strength. !!
Lifetime Velocity (lifetimeVelocity)!
The particles velocity over time. This is represented by three AnimationCurves in X-, Y- and Z
values. Use this to create controlled movement patterns for your particles such as waves or wind.
Use PlaygroundParticles.applyLifetimeVelocity = true; to turn this behavior on.!!
Initial Velocity (initialVelocityMin, initialVelocityMax)!
The initial velocity for each particle in world coordinates. Use this to create a constant initial force
towards direction. These are set by minimum and maximum value to create a spread within range.!!
Initial Local Velocity (initialLocalVelocityMin, initialLocalVelocityMax)!
The initial velocity for each particle in local coordinates. This can be used together with all types of
sources that has a transform attached. Use this to emit in the direction of the normals of a mesh or
in the local position with rotation of a transform. These are set by minimum and maximum value to
create a spread within range.!!
Initial Velocity Shape (initialVelocityShape)!
Shape your own initial velocity by Vector3AnimationCurves. The shape applies to an emitted
particle’s force where X is total amount of source positions and Y is multiplier for total initial
velocity. Use this to create shapes in how your particles spread out in the scene. 
For instance, try a transform with overflow offset to see the basics of how this distributes velocities
to each particle’s initial velocity at birth with respect to source positions.!!
Velocity Bending (velocityBending)!
Possibility to bend a particle’s velocity using the reflected value of current velocity multiplied with
bending. The direction from each particle’s source position towards their current is seen as the
normal plane. Each particle’s current velocity path is altered with the bended direction. You can use

Page � of �10 28

Particle Playground - Manual

this to create interesting movement patterns without having to use Manipulators (combine them to
create really interesting behavior).!!
Gravity (gravity)!
Creates a constant force towards this Vector3.!!
Damping (damping)!
The inertia over time of each particle. 
 
Max Velocity (maxVelocity)!
The maximum velocity magnitude allowed for a particle.!!
Axis Constraints (axisConstraints)!
The world axises (boolean values in X, Y and Z) to constraint forces for a particle. !!
Collision 
 
Collision (collision)!
Determines whether the particles should collide or not. This will calculate collisions with colliders
within your scene.!!
Collision Mask (collisionMask)!
A LayerMask which determines which objects these particles can collide with.!!
Collide With Rigidbodies (affectRigidbodies)!
Determines whether each collision should affect rigidbodies and apply forces to them. This can
only happen if a particle collides with a collider that also has a rigidbody as component.!!
Mass (mass)!
The mass of each particle. This is used when calculating how much each particle will affect a
rigidbody. A particle with a higher mass will affect the rigidbody more than a particle with a lower
mass.!!
Collision Radius (collisionRadius)!
The collision radius of each particle. 
 
Lifetime Loss (lifetimeLoss)!
The amount of lifetime (energy) to loose on collision measured by remaining lifetime span in a
normalized value. A lifetime loss of 0.5 on a particle in 50% of its lifetime will set it to 75% of its
lifetime.!!
Bounciness (bounciness)!
The bounciness of each particle. This value will determine how much of the original force the
particle will detain after collision. For instance, using a value of 0.5 will make the particle loose half
its force, using a value of 1.0 will make the particle have all force in remain. 
 
Random Bounce (bounceRandomMin, bounceRandomMax)!
The random offset bounce determined within minimum and maximum Vector3-value from the
collision surface’s normal. Use this to simulate uneven surfaces. 
 
Collision Planes (colliders)!
The infinite collision planes. These are created from transforms within the scene using the
transform’s upward axis to determine if a particle is within or passed the infinite plane. A particle
cannot live outside of the passed plane when using collisions. Use this to contain particles within a

Page � of �11 28

Particle Playground - Manual

determined space. The planes are updated within the calculation cycle to always match their
assigned transform.!!
Rendering 
 
Material (particleSystemRenderer.sharedMaterial)!
The material each particle uses in this Particle Playground System.!!
Lifetime Color (lifetimeColor)!
The color each particle uses in this Particle Playground System during their lifetime. This is
determined by a Gradient. When using State as Source and an image, the alpha from Lifetime
Color will be used. If you don’t plan to use alpha over lifetime you can disable this behavior in the
Playground Manager by setting Lifetime Alpha for States to false
(Playground.statesUsesLifetimeAlpha).!!
Color Source (colorSource)!
Choose which type of method to colorize your particles with Color Source (found in Rendering).
Using a state with a texture or painted positions from a brush with a texture is an example of a
Color Source. If no source is used a fallback to Lifetime Color will occur. You also have the
possibility to only set alpha from Lifetime Color while the colors are picked up from the source
positions.!!
Source Uses Lifetime Alpha (sourceUsesLifetimeAlpha)!
Determines if the source color should use alpha from its source or from Lifetime Color.!!
Render Mode (particleSystemRenderer2.renderMode)!
The graphical presentation of a particle. This is directly connected to the Shuriken particle system.!!
Max Particle Size (particleSystemRenderer2.maxParticleSize)!
The normalized screen size of a particle. This is directly connected to the Shuriken particle system.!!
Advanced 
 
Update Rate (updateRate)!
The update rate of this Particle Playground System. This determines how often the calculation loop
will run. For instance, 1 will make the calculation run each frame, 2 will make it run each second
frame. The higher the number the more choppy the particles will move over time, but hog up less
of the main thread. Use this to balance quality of appearance with performance.!!
Simulation Space (shurikenParticleSystem.simulationSpace)!
Determines if particles are simulated in world- or local space. This is directly connected to the
Shuriken particle system. However, it affects how particles are calculated where world to local
space is converted throughout the whole framework.!!
Rebirth Options!
Control if certain actions should be run upon particle rebirth.!!

!Random Size (applyRandomSizeOnRebirth)!
Particle will get a new size within minimum and maximum range of sizeMin and sizeMax.!!
!Random Rotation (applyRandomRotationOnRebirth)!
Particle will get a new initial rotation within minimum and maximum range of
initialRotationMin and initialRotationMax.!!
!Random Scatter (applyRandomScatterOnRebirth)!

Page � of �12 28

Particle Playground - Manual

Particle will get a new scatter position within minimum and maximum range of
sourceScatterMin and sourceScatterMax.!!

Particle Pool!
This is an Editor feature where you can Clear out all currently simulated particles (source positions
will remain intact) and Rebuild them towards their source positions.!!!
Playground Manager (Playground / PlaygroundC)!!
Particle Systems 
 
Particle Systems (particleSystems) 
The list of Particle Playground Systems within the scene. Use this list in the Editor to create new,
jump between (by pressing the name), to copy, sort or remove the particle systems. To access a
particle system through script you can use Playground.GetParticles(int), where int will
be the position in the list. This will return a PlaygroundParticles /
PlaygroundParticlesC object. 
 !
Manipulators 
 
Manipulators (manipulators) 
The list of Manipulators used within the scene. A Manipulator has abilities to alter the Particle
Playground Systems within the scene. Press ”Create” to create a new Manipulator, then Enable it
and assign a Transform from your scene. Make sure to set the Type, what it Affects, its Size and
Strength. Having the Manipulator unfolded in the list will render handles in the Scene View where
you can change size and strength. To access a particular Manipulator through script you can use
Playground.GetManipulator(int) which will return a ManipulatorObject in int
position.! !

!Enabled (enabled)!
!Determines if this Manipulator is active.!!
Transform (transform)!
The Transform to assign to this Manipulator. Use an object from your Scene, it’s the
Transform object that will be the source for this Manipulator.!!
Type (type)!
The behavior of this manipulator.!!

!None (MANIPULATORTYPE.None / MANIPULATORTYPEC.None)!
The behavior will be inactive.!!
Attractor (MANIPULATORTYPE.Attractor / MANIPULATORTYPEC.Attractor)!
The behavior will attract particles with funnel-like features.!!
AttractorGravitational (MANIPULATORTYPE.AttractorGravitational /
MANIPULATORTYPEC.AttractorGravitational)!
The behavior will attract particles with gravity-like features.!!
Repellent (MANIPULATORTYPE.Repellent / MANIPULATORTYPEC.Repellent)!
The behavior will repel particles with magnetic repellent-like features. 
 
Property (MANIPULATORTYPE.Property / MANIPULATORTYPEC.Property)!
The behavior will alter the property of each particle within range. !

None (MANIPULATORPROPERTYTYPE.None / MANIPULATORPROPERTYTYPEC.None)!

Page � of �13 28

Particle Playground - Manual

Don’t alter any properties. This will however flag each particle within range in the particle pool
and set its value of changedByProperty to true. You can use this to give particles your own
property logic.!
 
Color (MANIPULATORPROPERTYTYPE.Color / MANIPULATORPROPERTYTYPEC.Color)!
LifetimeColor (MANIPULATORPROPERTYTYPE.LifetimeColor /
MANIPULATORPROPERTYTYPEC.LifetimeColor)!
Alter the color of particle within range.!!

Only Color In Range (onlyColorInRange)
Determines if the new color will be kept by the particle or go back to its original when
out of the manipulator’s range.!!
Keep Color Alphas (keepColorAlphas)
Determines if the new color will inherit the original alpha from the particle’s source
color or get the alpha from the new color.!!

Velocity (MANIPULATORPROPERTYTYPE.Velocity /
MANIPULATORPROPERTYTYPEC.Velocity) 
Alter the velocity of particle within range.!!

Local Rotation (useLocalRotation)
Determines if the velocity should be calculated from the transform direction of the
manipulator. !

Additive Velocity (MANIPULATORPROPERTYTYPE.AdditiveVelocity /
MANIPULATORPROPERTYTYPEC.AdditiveVelocity) 
Add velocity to particle’s current velocity. !
Size (MANIPULATORPROPERTYTYPE.Size / MANIPULATORPROPERTYTYPEC.Size)!
Alter the size of particle within range. 
 
Target (MANIPULATORPROPERTYTYPE.Target /
MANIPULATORPROPERTYTYPEC.Target)!
Set node targets in form of transforms for particles.!!
Death (MANIPULATORPROPERTYTYPE.Death /
MANIPULATORPROPERTYTYPEC.Death)!
Force a sooner death upon particles.!!

Combined (MANIPULATORTYPE.Combined / MANIPULATORTYPEC.Combined)!
Combine manipulator properties into one manipulator call using the same position and radius.!!
Use Transition Lerp/Linear to change a property over time. The manipulator’s Strength will
determine how fast the property changes.!!

Affects (affects)!
The layers this Manipulator will affect.!!
Size (size)!
The spherical size of this Manipulator in Units. For instance, a Manipulator at the world
position Vector3(0, 0, 0) and a value of 1 will make the spherical extents reach between
Vector3(-0.5, -0.5, -0.5) and Vector3(0.5, 0.5, 0.5). All particles outside of the spherical
extent will be ignored. Use the Scene View along with the handles when a Manipulator is
unfolded from the Playground Manager’s list to see and edit how far it reaches.!!
Strength (strength)!
The strength of this Manipulator. All particles within the spherical size of this Manipulator
will be affected. The outcome of the behavior is dependent on the selected Type. Use the
Scene View along with the handles when a Manipulator is unfolded from the Playground
Manager’s list to see and edit their strength.!!

Page � of �14 28

Particle Playground - Manual

Inverse Bounds (inverseBounds)!
Invert the bounding space this Manipulator affects.!!

Advanced !
Calculate Particles (calculate) 
Turn this off to override calculation settings for all Particle Playground Systems and turn calculation
off in the entire scene.!!
Garbage Collection (garbageCollectOnResize) 
Determines if a GC.Collect should be run when resizing of all arrays occur when changing particle
count.!!
Group Automatically (autoGroup) 
Determines if a newly created or non-childed Particle Playground System should automatically get
Playground Manager as parent. This behavior is only for user convenience.!!
Build Zero Alpha Pixels (buildZeroAlphaPixels) 
Determines if an image’s completely transparent pixels should be built as particles or not. Have
this setting off if you want to spare the number of particles. Turn it on if you for instance want to
linearly interpolate from one state that has transparent pixels to another which doesn’t (or has
transparent pixels on different locations as the previous state).!!
Scene Gizmos (drawGizmos) 
Show Gizmos from Manipulators within Scene View.!!
Paint Toolbox (paintToolbox) 
Show toolbox when painting in Scene View.!!
Pixel Filter Mode (pixelFilterMode) 
The method to filter pixels with when reading textures.!!

!Bilinear (PIXELMODE.Bilinear / PIXELMODEC.Bilinear)!
Bilinear filtering mode.!!
Pixel32 (PIXELMODE.Pixel32 / PIXELMODEC.Pixel32)!

! Pixel32 filtering mode.!!
Time Simulation Reset 
Set time simulation to current time.!!
Editor Limits  
All limits constraining the Editor GUI controls in terms of minimum and maximum values.!!!!!!!!!!

Page � of �15 28

Particle Playground - Manual

Script reference!!
Particle Playground is written in C# and JavaScript. The language you prefer to work with can
either be determined by the choice of Playground Wizard (language) or by script, where all C#
classes ends with a ”C”. You can alter all settings on a Particle Playground System by calling
variables and functions on a PlaygroundParticles / PlaygroundParticlesC object, a wrapper through
the Playground / PlaygroundC object is also available for convenience. To create a new Particle
Playground System through script you use Playground.Particle() (JavaScript) or
PlaygroundC.Particle() (C#) which will return a PlaygroundParticles/C object. Please see the
example scene Particle Playground - Features for more detailed information on how to create and
alter a Particle Playground System through script. To learn the basics of painting during runtime
please see the example scene Particle Playground - Paint.!!
Running in Source Mode - Script!
Particle Playground can utilize a scripted version of a source by setting a particle system’s Source
to Script. In this mode you will bypass certain automatic features and be expected to run your own
methods of source positioning, color, velocity and parent (if using transform-specific features such
as ”Only Source Positions”. Lifetime Sorting, Overflow Offset and Delta Movement will not be
applicable in this mode. However, what this gives you is methods to run a highly controlled particle
emission with calculated forces, collisions and manipulations by the framework.!!
Emission can be done by calling the Emit() function on a PlaygroundParticles object. Example:!!
 playgroundParticleSystem.Emit(position, velocity, color, parent); !
• Position is set in world coordinates by a Vector3.!
• Velocity is set in units by a Vector3. This overrides the Initial Local Velocity.!
• Color is set by Color. Use Rendering > Color Source > Source to enable this color.!
• Parent is set by a Transform. This tells which object in the scene this particle belongs to when using transform-specific

features such as ”Only Source Positions”. This can be used to attach particles to specified objects.!!!
This can be used in many ways, for instance turning a Particle Playground System into a particle
pool where you have great control over when and where a particle exists, at what speed and color.
For instance - high speed projectiles with precise collisions, voxel-like objects/landscapes and any
kind of predetermined data.!!!!!!!!!!!!!!!!!!!!

Page � of �16 28

Particle Playground - Manual

!!
Playground.js / PlaygroundC.cs - Public Variables!!
These are the public variables exposed from the Playground Manager. Note that any C# specific
classes and enums ends with a ”C”.!!

!!!
Playground.js / PlaygroundC.cs - Functions!!
These are the static wrapper- and shared functions exposed on a Playground Manager for altering
a Particle Playground System. Please see Playground.js or PlaygroundC.cs for available overloads
and passed parameters. Note that any C# specific classes and enums ends with a ”C”.!!

Variable Name Type Description

particleSystems List.<PlaygroundParti
cles>

List of particle systems handled by
Playground Manager.

manipulators List.<ManipulatorObje
ct>

List of manipulator objects handled by
Playground Manager.

calculate boolean Calculate forces on
PlaygroundParticles objects.

pixelFilterMode PIXELMODE Color filtering mode used when
constructing states.

garbageCollectOnResize boolean Issue a GC.Collect when particle lists
are resized.

autoGroup boolean Automatically parent a
PlaygroundParticles object to
Playground if it has no parent.

buildZeroAlphaPixels boolean Turn this on if you want to build
particles from 0 alpha pixels into
states.

drawGizmos boolean Draw gizmos for manipulators in Scene
View.

paintToolbox boolean Show toolbox in Scene View when Source
is set to Paint on PlaygroundParticles
objects.

Function Name Return Type Description

Particle PlaygroundParticles Create a PlaygroundParticles object.

Emit int Spawns a particle when Source is set to
Script.

Random null Random position all particles within a
PlaygroundParticles object.

Lerp null Linear interpolation of position and
color of a PlaygroundParticles object.

ColorLerp null Linear interpolation of color of a
PlaygroundParticles object.

PositionLerp null Linear interpolation of position of a
PlaygroundParticles object.

Page � of �17 28

Particle Playground - Manual

SetPosition null Set new image/mesh/worldobject position
instantly.

GetPosition null Get position from a world object in a
PlaygroundParticles object.

GetNormals null Get normals from a world object in
Vector3[] format.

SetColor null Set new color to passed color instantly.

SetAlpha null Set alpha of particles instantly.

SetSize null Set particle size.

Translate null Translate all particles in Particle
System.

Update null Refresh and calculate particles in this
Playground Particles object.

Add null Add State.

AddCollider PlaygroundCollider Add a plane collider to a Particle
System.

SetParticleCount null Set amount of particles for this Particle
System.

SetLifetime null Set lifetime for this Particle System.

SetMaterial null Set material for this Particle System.

Destroy null Destroy this Particle System.

WorldObject WorldObject Create a world object reference (used for
live world positioning of particles
towards a mesh).

SkinnedWorldObject SkinnedWorldObject Create a skinned world object reference
(used for live world positioning of
particles towards a mesh).

ManipulatorObject ManipulatorObject Create a ManipulatorObject.

GetManipulator ManipulatorObject Return a ManipulatorObject in array
position of manipulators-list.

GetParticles PlaygroundParticles Return a PlaygroundParticles object in
array position of particleSystems-list.

PaintObject PaintObject Create a new PaintObject.

Paint null Paint into a PaintObject/
PlaygroundParticles-object.

Erase boolean Erase paint in a PaintObject/
PlaygroundParticles-object. Returns true
if a position were erased.

SetInitialTargetPositi
on

null Set initial target position for this
Particle System.

Emission null Set emission for this Particle System.

Clear null Clear out this Particle System.

InstantiatePreset PlaygroundParticles Instantiates a preset by name reference.
The preset must be stored in ”Particle
Playground/Resources/Presets/”

GetPixels Color32[] Return pixels from a texture.

Offset Vector3 Return offset based on image size

Function Name Return Type Description

Page � of �18 28

Particle Playground - Manual

!!!
Playground.js / PlaygroundC.cs - Classes!!
These are the classes available in Playground.js. Please see classes in Playground.js for function
overloads and further details.!!
PaintObject / PaintObjectC
Contains and alters data for particle paint. !

RandomVector3 Vector3[] Return random vector3-array.

RandomFloat float[] Returns a float array by random values.

ShuffleFloat null Shuffle an existing float array (alters
object by reference).

Largest int Compare and return largest array.

CountZeroAlphasInTextu
re

int Count the completely transparent pixels
in a Texture2D.

ResourceInstantiate GameObject Instantiate from Resources Folder.

Function Name Return Type Description

Name Type Description

Initialize function Initializes a PaintObject for painting.

Paint function Live paint into this PaintObject using a Ray
and color information. See the PaintObject
class for overloads.

Erase function Erase in this PaintObject using a position
and radius, returns true if position was
erased.

GetPosition function Return position at index of PaintObject's
PaintPosition.

GetColor function Return color at index of PaintObject's
PaintPosition.

GetNormal function Return normal at index of PaintObject's
PaintPosition.

GetParent function Return parent at index of PaintObject's
PaintPosition.

Update function Live positioning of paintPositions regarding
their parent. Pass in an int to update a
specific position.

RemoveNonParented function Clear out all emission positions where the
parent transform has been removed.

ClearPaint function Clear out the painted positions.

spacing float The required space between the last and
current paint position.

layerMask LayerMask The layers this PaintObject sees when
painting

brush Brush The brush data for this PaintObject

Page � of �19 28

Particle Playground - Manual

!
PlaygroundBrush / PlaygroundBrushC
Contains data for a brush used when painting. !

!
ParticleState / ParticleStateC
Contains and alters data for a single state. !

exceedMaxStopsPaint boolean Should painting stop when paintPositions is
equal to maxPositions (if false paint
positions will be removed from list when
painting new ones)

initialized boolean Is this PaintObject initialized yet?

Name Type Description

Name Type Description

SetTexture function Set the texture of this brush

Construct function Cache the color information from this brush

GetColor function Return color at index of Brush

SetColor function Set color at index of Brush

texture Texture2D The texture to construct this Brush from

scale float The scale of this Brush (measured in Units)

detail BRUSHDETAIL The detail level of this brush

distance float The distance the brush reaches

Name Type Description

Initialize function Initializes a ParticleState for construction.

ConstructParticles function Construct data for particle position and
color.

SetDepthmap function Set depth map to image ParticleState.

GetColor function Return color at index of ParticleState.

GetColors function Return colors in ParticleState.

GetPosition function Return position at index of ParticleState.

GetPositions function Return positions in ParticleState.

SetColor function Set color at index of ParticleState.

SetPosition function Set position at index of ParticleState.

Clone function Return a copy of this ParticleState.

stateTexture Texture2D The texture to construct this state from
(used to color each vertex if mesh is used).

stateDepthmap Texture2D The texture to use as depthmap for this
state. A grayscale image of the same size as
stateTexture is required.

Page � of �20 28

Particle Playground - Manual

!
Vector3AnimationCurve / Vector3AnimationCurveC
Holds AnimationCurves in X, Y and Z variables. !

!
WorldObject / WorldObjectC
Holds information about a World Object. !

!!

stateDepthmapStrength float How much the grayscale from stateDepthmap
will affect z-value.

stateMesh Mesh The mesh used to set this state's positions.
Positions will be calculated per vertex.

stateName String The name of this state.

stateScale float The scale of this state (measured in units).

stateOffset Vector3 The offset of this state in world- or local-
(when stateTransform is used) position
(measured in units).

stateTransform Transform The transform that will act as parent to this
state.

colorLength int The length of color array.

positionLength int The length of position array.

Name Type Description

Name Type Description

Evaluate function Return a vector3 at time.

Clone function Return a copy of this Vector3AnimationCurve

x AnimationCurve AnimationCurve for X-axis.

y AnimationCurve AnimationCurve for Y-axis.

z AnimationCurve AnimationCurve for Z-axis.

Name Type Description

gameObject GameObject The GameObject of this World Object.

transform Transform The Transform of this World Object.

rigidbody Rigidbody The Rigidbody of this World Object.

renderer Renderer The Renderer of this World Object.

cachedId int The id of this World Object (used to keep
track when this object changes).

mesh mesh The mesh of this World Object.

vertexPositions Vector3[] The vertices of this World Object.

normals Vector3[] The normals of this World Object.

Page � of �21 28

Particle Playground - Manual

ManipulatorObject / ManipulatorObjectC
Holds information about a Manipulator Object. Note that any C# specific classes
and enums ends with a ”C”. !

!
ManipulatorProperty / ManipulatorPropertyC
Holds information about a Manipulator Property. Note that any C# specific
classes and enums ends with a ”C”. !

Name Type Description

Contains function Check if manipulator contains position.

Clone function Clone this ManipulatorObject.

type MANIPULATORTYPE The type of this manipulator. !
Available values: None, Attractor,
AttractorGravitational, Repellent

property ManipulatorProp
erty

The property settings (if type is property).

affects LayerMask The layers this manipulator will affect.

transform Transform The transform of this manipulator.

shape MANIPULATORSHAP
E

The shape of this manipulator (sphere or
box).

size float The size of this manipulator.

bounds Bounds The bounds of this manipulator (if shape is
box).

strength float The strength of this manipulator.

enabled boolean Is this manipulator enabled?

Name Type Description

Clone function Clone this ManipulatorProperty.

type MANIPULATORPROPE
RTYTYPE

The type of this ManipulatorProperty.

transition MANIPULATORTPROP
ERTYRANSITION

The transition of this ManipulatorProperty.

velocity Vector3 The velocity of this ManipulatorProperty.

color Color The color of this ManipulatorProperty.

size float The size of this ManipulatorProperty.

targets List.<Transform> The target transforms to position towards.

targetPointer int The next target pointer (self incremented).

Page � of �22 28

Particle Playground - Manual

!
PlaygroundCollider / PlaygroundColliderC
Holds information about a Playground Collider. !

!
ParticleProjection / ParticleProjectionC
Holds information about a Particle Projection object. !

targetId int The target id for this manipulator. This
value pairs a particle with a manipulator.

useLocalRotation boolean Should the manipulator’s transform direction
be used to apply velocity?

onlyColorInRange boolean Should the particles go back to original
color when out of range?

keepColorAlphas boolean Should the particles keep their original
alpha?

onlyPositionInRange boolean Should the particles stop positioning towards
target when out of range?

zeroVelocityStrength float The strength to zero velocity on target
positioning when using transitions.

Name Type Description

Name Type Description

Clone function Clone this PlaygroundCollider.

UpdatePlane function Updates this PlaygroundCollider’s plane.

enabled boolean Is this PlaygroundCollider enabled?

transform Transform The transform that makes this
PlaygroundCollider.

plane Plane The plane of this PlaygroundCollider.

Name Type Description

Initialize function Initialize this ParticleProjection object.

Construct function Build the source data.

Update function Update the projection.

GetColor function Return color at index.

GetPosition function Return position at index.

GetNormal function Return normal at index.

GetParent function Return parent at index.

projectionTexture Texture2D The texture to project.

Page � of �23 28

Particle Playground - Manual

!!
PlaygroundParticles.js / PlaygroundParticlesC.cs!!
These are the public variables exposed on a Particle Playground System. Note that any C#
specific classes and enums ends with a ”C”.!!

projectionOrigin Vector2 The origin offset in Units.

projectionTransform Transform Transform to project from.

projectionDistance float The distance in Units the projection travels.

projectionScale float The scale of projection in Units.

projectionMask LayerMask Layers seen by projection

surfaceOffset float The offset from projected surface.

liveUpdate boolean Determines whether this projector should
update each frame.

Name Type Description

Variable Name Type Description

source SOURCE The particle source. This determines
how particles are initially created. !
Available values:
State, Transform, WorldObject,
SkinnedWorldObject, Script

sourceDownResolution int The source distribution over vertices
used to down resolution a skinned
mesh.

activeState int Current active state (when using state
as source).

transition TRANSITION The type of transition to use when
switching activeState. !
Available values:
None, Lerp, Fade, Fade2

transitionTime float The time it takes to complete a
transition.

emit boolean If emission of particles is active on
this PlaygroundParticles.

loop boolean Should the emission cycle loop or just
run one time after initiation?

disableOnDone boolean Should the GameObject disable when
first lifetime cycle has finished?

updateRate int The rate to update this
PlaygroundParticles.

calculate boolean Calculate forces on this
PlaygroundParticles (can be overrided
by Playground.calculate).

Page � of �24 28

Particle Playground - Manual

calculateDeltaMovement boolean Calculate the delta movement force of
this particle system.

deltaMovementStrength float The strength to multiply delta
movement with.

worldObjectUpdateNorma
ls

boolean If the current world object will
change its vertices over time enable
this to get the updated normals.

nearestNeighborOrigin int The initial source position when using
lifetime sorting of Nearest Neighbor /
Nearest Neighbor Reversed

particleCount int The amount of particles within this
PlaygroundParticles object.

overflowOffset Vector3 Offset when particle count exceeds
source count.

overflowMode OVERFLOWMODE The method to calculate overflow with.

applySourceScatter boolean Should source position scattering be
applied?

sourceScatterMin Vector3 The minimum spread of source position
scattering.

sourceScatterMax Vector3 The maximum spread of source position
scattering.

emissionRate float The percentage to emit of
particleCount in bursts from this
PlaygroundParticles.

sorting SORTING Sort mode for particle lifetime. Use
this to alter the initial structure of
the particles at birth. !
Available values:
Scrambled, ScrambledLinear, Burst,
Linear, Reversed, NearestNeighbor,
NearestNeighborReversed

sizeMin float Minimum particle size.

sizeMax float Maximum particle size.

scale float The scale of minimum- and maximum
size.

rotationSpeedMin float Minimum amount to rotate.

rotationSpeedMax float Maximum amount to rotate.

lifetime float The life of a particle in seconds.

lifetimeSize AnimationCurve The size over lifetime of each
particle.

lifetimeOffset float The offset of lifetime cycles. Use
this to offset particle systems
lifetime with each other.

onlySourcePositioning boolean Should the particles only position on
their source (and not apply any
forces)?

applyLifetimeVelocity boolean Should lifetime velocity affect
particles?

Variable Name Type Description

Page � of �25 28

Particle Playground - Manual

lifetimeVelocity Vector3AnimationCurve The velocity over lifetime of each
particle.

applyInitialVelocity boolean Should initial velocity affect
particles?

initialVelocityMin Vector3 The minimum starting velocity of each
particle.

initialVelocityMax Vector3 The maximum starting velocity of each
particle.

applyInitialLocalVeloc
ity

boolean Should initial local velocity affect
particles?

initialLocalVelocityMi
n

Vector3 The starting minimum velocity of each
particle with normal or transform
direction.

initialLocalVelocityMa
x

Vector3 The starting maximum velocity of each
particle with normal or transform
direction.

applyInitialVelocitySh
ape

boolean Should the initial velocity shape be
applied on particle re/birth?

initalVelocityShape Vector3AnimationCurve The amount of velocity to apply of the
spawning particle’s initial/local
velocity in form of a
Vector3AnimationCurve.

applyVelocityBending boolean Should bending affect particles
velocity?

velocityBending Vector3 The amount to bend the velocity path
of each particle.

gravity Vector3 The constant force towards
gravitational vector.

damping float Particles inertia over time.

maxVelocity float Maximum allowed velocity magnitude.

lifetimeColor Gradient The color over lifetime.

axisConstraints PlaygroundAxisConstra
ints

The force axis constraints of each
particle. Set by x, y and z booleans.

colorSource COLORSOURCE The source to read color from
(fallback on Lifetime Color if no
source color is available)

sourceUsesLifetimeAlph
a

boolean Should the source color use alpha from
Lifetime Color instead of the source's
original alpha?

collision boolean Can particles collide?

affectRigidbodies boolean Should particles affect rigidbodies?

mass float The mass of a particle (calculated in
collision with rigidbodies).

collisionRadius float The spherical radius of a particle.

collisionMask LayerMask The layers these particles will
collide with.

lifetimeLoss float The amount a particle will loose of
its lifetime on collision.

Variable Name Type Description

Page � of �26 28

Particle Playground - Manual

!
Please see PlaygroundParticles.js or PlaygroundParticlesC.cs for available internal functions for a PlaygroundParticles/C
object.!!!!!!!!!!!!!!!!

bounciness float The amount a particle will bounce on
collision.

bounceRandomMin Vector3 The minimum amount of random
bounciness (seen as negative offset
from the collided surface’s normal
direction).

bounceRandomMax Vector3 The maximum amount of random
bounciness (seen as positive offset
from the collided surface’s normal
direction).

colliders PlaygroundCollider The Playground Colliders of this
particle system.

states List.<ParticleState> The states of this
PlaygroundParticles. A state is a
snapshot from an image or mesh with
position- and color data.

worldObject WorldObject A mesh calculated within the scene.

skinnedWorldObject SkinnedWorldObject A skinned mesh calculated within the
scene.

sourceTransform Transform A transform calculated within the
scene.

paint PaintObject The paint source of this
PlaygroundParticles.

projection ParticleProjection The projection source of this
PlaygroundParticles.

manipulators ManipulatorObject The list of manipulators handled by
this particle system.

playgroundCache PlaygroundCache The internally used data for each
particle.

particleCache ParticleCache The internally used particle pool.

Variable Name Type Description

Page � of �27 28

Particle Playground - Manual

!
Support!!
For questions, requests and bug-reporting please send a mail to support@polyfied.com.!
Please visit http://playground.polyfied.com/ for more information.!!!
Particle Playground Version: 1.20!
Document updated: April 20, 2014!!!!!!!!!!!!!!!!!!!!

Polyfied. Stockholm, Sweden 2014.!
polyfied.com

Page � of �28 28

